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3. Timeline: 
 
  Expectations are for analyses to be completed within 1 year. 
 
4. Rationale:  

There is an increasing body of work based on the use of machine learning and artificial 
intelligence[1-4] to estimate chronological age using neuroimaging data. The gap between 
chronological age and estimated brain age (BAG) is then used as a measure of brain 
accelerated/resilient aging. These estimates are often based on structural MRI because it is 
more available, less invasive and cheaper compared to other brain imaging modalities such as 
Positron Emission Tomography (PET).  Accelerated brain aging calculated in this fashion has 
been shown to be associated with smoking and alcohol consumption[5]  and cognitive 
impairment and  progression to AD[6, 7] among other examples. Cole et al have reported that 
accelerated brain aging was associated with measures of physical function, health status and 
mortality[8]. 

On the other hand, there is an increased interest in proteomics to investigate human aging[9-
11] and brain disease[12]. Proteomic clocks have been devised[9, 10, 13, 14] which facilitate 
the biological interpretation of the results when compared to epigenetic clocks. Ferruci and 
Tanaka used the SomaScan proteomics platform to measure 1306 proteins in 240 healthy men 
and women between 22 and 93 years[14]. They found 197 proteins to be positively associated 
and 20 proteins negatively associated with age. Sathyan et al. also based on elastic net 
regression models, created a proteomic signature of age based on relative concentrations of 76 
proteins that highly correlated with chronological age (r = 0.94)[15]. By utilizing the 
SomaScan® proteomic platform in 1,025 participants of the LonGenity cohort (age range: 65-95, 
55.7% females), they found that 754 of 4,265 proteins were associated with chronological age. 
Pleiotrophin, WNT1-inducible-signaling pathway protein 2, chordin-like protein 1, transgelin 
and R-spondin-1 were the proteins most significantly associated with age. The correlation 
between proteomic age prediction based on elastic net regression and chronological age was 
0.8 (p < 2.2E-16). Johnson et al. proposed a novel proteomic aging clock comprised of proteins 
that were reported to change with age in plasma in three or more different studies. Using a 
large patient cohort comprised of 3,301 subjects (aged 18-76 years), they demonstrated that 
this clock is able to accurately predict human age[9].  

Several groups have linked proteomics data to brain structural MRI. Harris and colleagues found 
that, in the Lothian Birth Cohort, that the associations between EDA2R and general fluid 
cognitive ability were mediated by total brain volumes[16]. Shi and colleagues identified 17 
plasma proteins related to hippocampal volume and 2 correlated with white matter 
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hyperintensities in cognitively normal individuals using spearman correlations after correcting for 
multiple comparisons [17]. Based on data from the Atherosclerosis Risk in Communities study 
(ARIC), Walker and colleagues reported thirty-eight proteins to be associated with incident 
dementia after Bonferroni correction[12]. Of these, 16 were also associated with late-life 
dementia risk when measured in plasma collected nearly 20 years earlier, during mid-life. In 
addition, they found associations of several proteins with MRI derived measures of 
neurodegeneration and brain disease (e.g. total brain volume, white matter hyperintensities 
and a meta-ROI based on regions sensitive to AD). We recently investigated associations of an 
MRI measure called the AD Pattern Similarity scores [18-20] also using ARIC proteomic data 
(GeroScience, under review). We found the GDF-15 and pleiotrophin to be associated with the 
AD-PS scores after a Bonferroni correction. Our study was informed by a panel of 32 proteins 
reported to be associated with aging in the literature in 5 studies or more[9]. However, it is rare 
linking proteomics to an MRI measure of accelerated/resilient brain aging as we proposed here. 
This type of analyses can potentially lead to the identification of proteins related to the process of 
brain aging, understand mechanisms that lead to it and future clinical targets.  

Here we capitalize on the rich phenotypic characterization of the ARIC participants to deploy an 
MRI measure of accelerated/resilient aging and investigate its cross-sectional and longitudinal 
associations with proteomics, cognitive function and mortality. We will use machine learning to 
determine associations of proteomic data with accelerate/resilient brain aging.  

 
5. Main Hypothesis/Study Questions: 
 
Our main objective is to deploy a new measure of brain aging and investigate its associations 
with proteomics, cognitive function and mortality.  
 
Our main hypotheses are: 
 
Hypothesis 1 (Cross-sectional): The measure of accelerated/resilient brain aging implemented 
using MRIs at visit 5 will be associated with cognitive status at visit 5. 
 
Hypothesis 2 (Longitudinal): The measure of accelerated/resilient brain aging implemented 
using MRIs at visit 5 will be predictive of incident cognitive impairment and mortality within 5 
and 8 years of follow-up respectively. 
 
Hypothesis 3 (Imaging - Proteomics): Based on the full Soma logic panel collected at visits 3-5 
and machine learning methods, we will determine proteomics signatures associated with our 
brain aging measure suggesting their involvement in accelerated/resilient brain aging. 
 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, and 
any anticipated methodologic limitations or challenges if present). 
 



 
 
 
 
Design: Cross-sectional and longitudinal study design with follow-up through visit 7.  
 
Outcome sets: 
 
Visit 3 
 
Proteomic data 
 
Visits 5-7 
Mortality 
 
Visit 6-7 
 
Cognitive status 
 
Datasets: 
 
Visits 5: 
 
MRI 
Proteomic data 
Physical function data 
Demographics 
Comorbidities 
Clinical data 
 
Analyses: 
 
Hypothesis 1 (Cross-sectional): The measure of accelerated/resilient brain aging implemented 
using MRIs at visit 5 will be associated with cognitive status at visit 5. 
  
We will use similar methods to those we used to create the AD-PS scores[18, 19] to produce 
estimates of age from the MRI scans collected at visit 5 but instead of solving a high-
dimensional  classification problem a regression problem will be solved using the elastic net. 
The training dataset will be composed by 592 MRI images from cognitively normal participants 
(55-90 years old) in the Alzheimer’s Neuroimaging Initiative Study. Once the elastic net 
regression model is estimated, MRI data from ARIC visit 5 is provided to the model as input to 
obtain the estimated ages for each individual.  The gap between estimated and chronological 
age (Brain Aging Gap – BAG) will be used as measure of accelerated/resilient aging. We will use 
logistic regression analyses to evaluate BAG associations with cognitive status at visit 5. In 



addition, receiver operating characteristic (ROC) curve analyses will be used to evaluate 
discrimination between CN and cognitively impaired individuals (MCI + dementia cases).  
 
Hypothesis 2 (Longitudinal): The measure of accelerated/resilient brain aging implemented 
using MRIs at visit 5 will be predictive of incident cognitive impairment, and mortality within 5 
and 8 years of follow-up respectively. 
 
We will use logistic and Cox regression analyses to evaluate BAG associations with incident 
cognitive impairment and mortality.  
 
Hypothesis 3 (Imaging - Proteomics): Based on the full Soma logic panel collected at visits 3-5 
and machine learning methods, we will determine proteomics signatures associated with our 
brain aging measure suggesting their involvement in accelerated aging or resilience. 
 
Proteins (visit 3) - Accelerated/resilient Brain Aging visit 5 (Longitudinal) - We will use the 
elastic net (LASSO) to identify proteomic signatures that predict biological brain aging at visit 5 
in individuals that have both proteomics at visit 3 and MRIs at visit 5. 
 
 Proteins visit 5 - Accelerated/resilient Brain Aging (visit 5)  (Cross-sectional) – Similar to above 
but cross-sectional at visit 5. We will identify proteins that overlap across the two analyses. 
 
 Standard statistical analyses will be adjusted by age, race-center, sex, education, smoking, 
hypertension, and diabetes. Analyses will be stratified by race and sex. 
 
Limitations/Challenges 
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